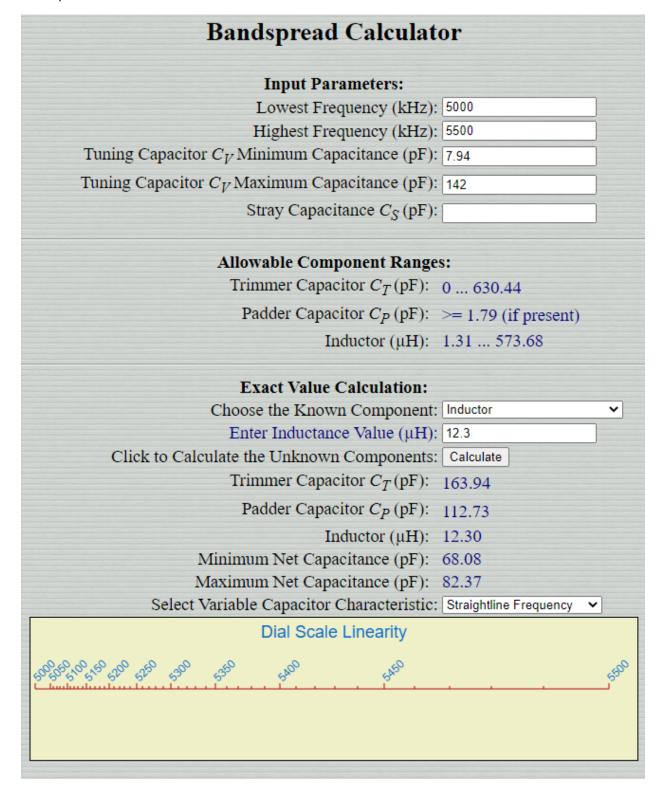

Situation 1: SLC cap. 7.94 – 142 pf 12.6 uH 3800 to 15135 kHz Lots of Bunching at the high end.

But very linear between 5 and 6 MHz, even with SLC cap!


Situation 2: Same parameters, but here using an SLF cap: Really spreads it out. It works well. Note: Tuning range is wide. Almost 4:1 Close to the 3:1 range of the AM broadcast band.

Situation 3: Look what happens when I narrow the tuning range. Here we are using the same variable cap and the same coil, but I have narrowed the tuning range from 5 to 5.5 MHz. Even with a standard SLC cap, the frequencies are much more spread out. This is why we often see fairly good tuning linearity even when using SLC caps!

Toward Designation	
Input Parameters: Lowest Frequency (kHz):	5000
Highest Frequency (kHz):	
Tuning Capacitor C_V Minimum Capacitance (pF):	
Tuning Capacitor C_V Maximum Capacitance (pF):	
Stray Capacitance C_S (pF):	
Allowable Component Range	s:
Trimmer Capacitor $C_T(pF)$:	0 630.44
Padder Capacitor C_P (pF):	>= 1.79 (if present)
Inductor (μH):	1.31 573.68
Exact Value Calculation:	
Choose the Known Component:	Inductor
Enter Inductance Value (µH):	12.3
Click to Calculate the Unknown Components:	Calculate
Trimmer Capacitor $C_T(pF)$:	163.94
Padder Capacitor C_P (pF):	112.73
Inductor (μH):	12.30
Minimum Net Capacitance (pF):	68.08
Maximum Net Capacitance (pF):	82.37
Select Variable Capacitor Characteristic:	Straightline Capacitance 🕶
Dial Scale Linearity	
200 5100 5150 5250 5250	edge edge engy engy etg

Situation 4: Surprisingly, under these circumstances switching to an SLF capacitor will make your Linear Tuning MUCH WORSE. Here is what happens when I keep all the parameters the same, but switch to an SLC cap:

Situation 5. Bob's messages got me thinking about something I did when I was a new homebrewer: When the variable cap that I had on hand had too much C range, I simply pulled off rotor vanes until is was about right! I destroyed a lot of capacitors before I discovered the wonders of padding caps.

But suppose I could get a variable cap just in the range that I needed, and could dispense with the trimmers and the padder. This would probably aid in stability a bit. But what would it do to tuning linearity?

To find out I in effect substituted out the cap I used yesterday (7.94 - 142 pf) for a cap of 60 - 82 pf without the padder and with only a very small trimmer (I had to extend the range a bit to make it work).

Here it is with the ordinary Straightline Capacitance cap:

Bandspread Calculator			
Input Parameters:			
Lowest Frequency (kHz):	4900		
Highest Frequency (kHz):	5600		
Tuning Capacitor C_V Minimum Capacitance (pF):	60		
Tuning Capacitor C_V Maximum Capacitance (pF):	82		
Stray Capacitance C_S (pF):	10		
Allowable Component Ranges:			
Trimmer Capacitor $C_T(pF)$:	0 1.87		
Padder Capacitor C_P (pF):	>= 3404.17 (if present)		
Inductor (µH):			
Exact Value Calculation:			
Choose the Known Component:	Padder Capacitor (Series)		
Enter Series Capacitance Value (pF):	0		
Click to Calculate the Unknown Components:	Calculate		
Trimmer Capacitor $C_T(pF)$:	1.87		
Padder Capacitor C_P (pF):	0.00		
Inductor (µH):	11.24		
Minimum Net Capacitance (pF):	71.87		
Maximum Net Capacitance (pF):	93.87		
Select Variable Capacitor Characteristic:	Straightline Capacitance >		
Dial Scale Linearity			
Tage Tage And Ang Ang Ang Ang Ang Ang Ang	the the the the the		

I think it looks pretty good. But look what happens when I switch to a Straightline Frequency cap:

Situation 6. I think the Straightline Frequency cap is a lot more linear. So in this case, it WOULD be worthwhile to go with an SLF cap.

Bandspread Calculator		
Input Parameters:		
Lowest Frequency (kHz):	4900	
Highest Frequency (kHz):	5600	
Tuning Capacitor C_V Minimum Capacitance (pF):	60	
Tuning Capacitor C_V Maximum Capacitance (pF):	82	
Stray Capacitance C_S (pF):	10	
Allowable Component Ranges:		
Trimmer Capacitor $C_T(pF)$:	0 1.87	
Padder Capacitor C_P (pF):	>= 3404.17 (if present)	
Inductor (µH):	11.24 11.71	
Exact Value Calculation:		
Choose the Known Component:	Padder Capacitor (Series)	
Enter Series Capacitance Value (pF):		
Click to Calculate the Unknown Components:	Calculate	
Trimmer Capacitor $C_T(pF)$:	1.87	
Padder Capacitor C_P (pF):	0.00	
Inductor (µH):	11.24	
Minimum Net Capacitance (pF):	71.87	
Maximum Net Capacitance (pF):		
Select Variable Capacitor Characteristic:	Straightline Frequency V	
Dial Scale Linearity		
The tage that the trac trac trac trac trac	Thus they thus they they	

Situation 7. Oddly, in this situation (smaller variable cap) the Midline/Centerline looks worse than the SLF or the SLC:

Bandspread Calculate	or	
Input Parameters:		
Lowest Frequency (kHz):	4900	
Highest Frequency (kHz):	5600	
Tuning Capacitor C_V Minimum Capacitance (pF):	60	
Tuning Capacitor C_V Maximum Capacitance (pF):	82	
Stray Capacitance C_S (pF):	10	
Allowable Component Ranges:		
Trimmer Capacitor $C_T(pF)$:	0 1.87	
Padder Capacitor C_P (pF):	>= 3404.17 (if present)	
Inductor (µH):	11.24 11.71	
Exact Value Calculation:		
Choose the Known Component:		
Enter Series Capacitance Value (pF):		
Click to Calculate the Unknown Components:		
	1.87	
Padder Capacitor C_P (pF):	0.00	
Inductor (µH):		
Minimum Net Capacitance (pF):		
Maximum Net Capacitance (pF):		
Select Variable Capacitor Characteristic:	Midline/Centerline V	
Dial Scale Linearity	48° 48° 48°	